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1 Abstract

Spatio-temporal processes are a class of prediction problem that are poorly served by traditional deep learning
architectures owing to the problems’ frequently irregular structures. We propose a method for encoding such
prediction problems as a graph which describes both the relationship between input samples from the process
and the desired prediction targets requested of the model. However, it is difficult to determine which graph
neural network (GNN) architecture is appropriate to apply to these problem domains, as works proposing
novel GNNs generally only evaluate them in settings where they are expected to perform optimally rather
than investigating their behavior and properties in general. We aim to address this gap in knowledge by
performing a fair, stake-free evaluation of three different GNN architectures on three distinct spatio-temporal
problems. The goal of this stake-free evaluation is to examine the behavior of each model on each problem
type rather than demonstrate that one dominates the other. We find that GNNs which cannot exploit edge
features perform poorly in this setting, and that GNNs which learn explicit interpretable weight functions are
slightly outperformed by their counterparts that employ black-box function for the same purpose. Finally,
we release the software platform used to perform this evaluation, which is designed to enable practitioners
to easily reproduce or extend our experiments.

2 Introduction

Many interesting real-world problems can be described as spatio-temporal processes. A spatio-temporal
process problem consists of a set of data samples for which each sample has an associated timestamp and
associated position in some shared space. Frequently, these samples represent discrete observations of some
underlying continuous process of interest. Examples include a citizen science setting, in which a collection of
data is gathered from a set of sensors distributed throughout some area that record environmental conditions
over time; and a military engagement, in which a changing set of allied units periodically report their status
and location, as well as any information available about the enemy’s status and location. In both settings,
the information of interest changes continuously over time, but generally its associated data would only be
recorded at a set of instantaneous time points. In the environmental citizen science setting, the environmental
conditions of interest likely change continuously throughout space as well, but we are only able to observe
its state at the provided sensors’ locations which we may not be able to control. Making useful inferences
about the state of such processes requires jointly reasoning about both the spatial and temporal relationships
between its samples.

There are well-known deep learning network architectures designed to process spatial and time series data:
convolutional neural networks (CNNs) and recurrent neural networks (RNNs) respectively. These building
blocks have previously been combined in various ways to construct models which are capable of reasoning
about spatio-temporal data, such as by Shi et al. (2015) or Li et al. (2017) However, these architectures
are challenging to effectively apply to real-world spatio-temporal processes in general. These architectures
require that their input consists of a regular, discrete structure such as a grid of pixels for CNNs, and a
sequence of predictably-spaced observations for RNNs. However, real-world spatio-temporal process data
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are unlikely to conform to this ‘grid world’ paradigm. For example, in the citizen science setting the sensors’
positions cannot be controlled and generally cannot be approximated with a regular grid structure, making
it difficult to effectively apply CNNs to reason about the data’s spatial relationships. Additionally these
architectures require their input structure to be densely populated with data, meaning they are unable to
natively handle sparse structures with ‘missing’ data entries. For example, in the military setting information
about enemy activity may be extremely sparsely and irregularly distributed throughout the duration of the
encounter, making it difficult to apply RNNs to infer the enemy units’ complete state at any given point in
time.

One solution to these issues is to re-sample the data such that it is forced to conform to the required grid
structure. For example, one could re-sample a set of points in 2D space by imposing a grid structure over
the same space, and assigning each cell in the grid a value based on the samples contained within its bounds.
However, this approach has significant drawbacks. Performing this resampling by discretizing continuously-
valued locations as described requires the grid resolution to be specifically tuned for each problem. If the grid
resolution is too small data samples with close neighbors may be ‘lost’ since each grid cell only represents
one sample, likely making it impossible for the model to have an accurate understanding of the state of the
process. If the grid resolution is too large the majority of the cells will not represent any data sample in the
problem, making it extremely difficult for the network to effectively reason about the relationships between
the relevant data samples.

Another possible solution for some domains is to use an imputation model to fill in any data that is ‘missing’
from the required regular structure. However, in complex processes where the data samples are very sparsely
distributed, the imputed samples far from any actual observations are unlikely to be informative. As before,
the model will struggle to make useful inferences about the process if the vast majority of the samples in the
sequence are ‘fake’ imputed samples. Additionally, generating and learning over these imputed samples may
itself be significantly expensive. In these complex processes, computing a large number of imputed samples
may impose an unacceptable performance overhead just to determine their values. On top of that, the model
itself may require significantly more memory or other resources to process such large input data. Since the
only purpose of the imputation is to allow the data to conform to the model’s prescribed regular structure,
a model that does not require such a regular structure would be more efficient since it is not required to
generate this extra data, and presumably more performant since it can exclusively reason about the most
informative samples rather than mostly working with the output of the imputation model.

These potential issues suggest that it would be preferable to employ a deep learning architecture that can
directly consume irregularly-distributed, continuously-valued data such as that found in spatio-temporal
processes. Graph neural networks (GNNs) are one such suitable architecture. Rather than operating on
input of a fixed, static structure, graph networks directly exploit the relationships explicitly described by an
arbitrary graph provided as input. Their use of parameter-sharing schemes and set functions allows them
to consume graphs with arbitrary numbers of nodes, edges, and those with nodes of differing numbers of
attached edges. This is much more flexible than the traditional CNN and RNN architectures, which are
beholden to their discrete, fixed underlying structure. As a result, representing spatio-temporal problem
instances with a graph structure and then processing them with a GNN model allows us to avoid the
pitfalls describe above associated with applying CNN- and RNN-style models to real-world spatio-temporal
processes.

Given the potential for graphs to represent sparse spatio-temporal data, there is a question of how effectively
different GNN architectures will perform on graph representations of such problems. As graphs can represent
extremely diverse types of data, different GNN architectures employ drastically different approaches to
processing their input, with drastically different corresponding inductive biases meant to exploit different
features of the provided graph structure. Each type of graph network is generally inspired by certain types
of problems and often evaluations are limited to just those problem types. While such evaluations highlight
strengths each model, they fail to provide insight into performance on other problem types. This makes it
difficult for practitioners to infer which GNN architecture may be most appropriate for a problem at hand.
This, for example, is the case for sparsely sampled spatio-temporal process. This lack of a useful, neutral
examination of GNN models’ capabilities suggests the need for a ‘stake-free’ evaluation of these models, in
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Expression Meaning
X Set of all input samples that make up a problem instance
x An individual sample within the process
Q Set of all query targets that describe the problem instance’s requested predictions
Q∗ Ground truth for queries Q

Pos(x) The spatial location of the sample
Time(x) The temporal location of the sample
Feat(x) The sample’s feature values, excluding positional information
Ent(x) The sample’s associated entity ID

DistP (x, x′) The difference vector between two samples’ spatial locations
DistT (x, x′) The difference between samples’ locations in time
GNN(G, X) Calling a GNN to calculate latent encodings for the set of nodes X in graph G

Table 1: Spatio-Temporal Process Notation

which the goal is not to prove dominance of one model over the others. Rather, a ‘stake-free’ evaluation
aims to examine the differing behavior and capabilities of each type of model on different problems.

In this work, we aim to address this gap in knowledge by fairly evaluating three meaningfully distinct GNN
architectures on three different types of spatio-temporal problems. Each architecture is evaluated by defining
three instantiations of each network type of varying sizes (i.e. Small, Medium, Large) such that every model
of a given size has similar parameter count. To ensure that all models are trained and evaluated fairly we also
propose a procedure for determining appropriate training hyperparameters for any given model instantiation,
modified from the learning rate test proposed by Smith (2017).

We find that the edge-feature-aware graph networks significantly outperform the graph network architecture
which exclusively relies on graph adjacency information to reason about the relationship between nodes. Of
the edge-aware networks, some architecture learn explicit weight functions to filter the values of neighboring
nodes. These weight functions can be visualized to demonstrate the model’s understanding of the problem
domain. However, the architectures that instead reason about each node’s neighbors using a black-box
function seem to generally perform better and exhibit better generalization performance despite their lack
of explicit interpretability. Finally, we publicly release the software platform developed to perform all the
experiments in this evaluation to allow others to reproduce or extend our work.

3 Spatio-Temporal Processes

Each instance of a spatio-temporal problem consists of a set of observations (or samples) from distinct
entities that change over time while occupying some shared space, and a set of domain-specific queries
which describe the desired predictions within that same space. It is important to note that there are no
constraints on how an observation’s associated position and time are described. Whereas most deep learning
architectures require spatial and temporal data to conform to some regular structure (such as a 2D grid
representing an image, or an ordered sequence representing regularly-spaced observations throughout time),
in our setting all observations’ spatial and temporal locations are represented by unconstrained continuous
values. Consequently, the number of input observations and target queries in a problem instance is not
fixed. Any problem instance may include any number of entities, each of which may have any number of
representative samples included in the set of input observations.

Just as instances of such spatio-temporal problems consist of a dynamic number of samples in the input set,
the number of queries associated with each problem instance is also not fixed. For example, the problem’s
goal may be to predict the state of each entity at some future time, or it may be to predict the state of
some unobserved location in space and time from the provided input samples. In either case, the number
of desired predictions and their relationship to the input samples is not fixed. This is in contrast to most
deep models, which generally produce a constant-size output or produce outputs of varying length but over
a fixed structure, such as a sequence.
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We observe a problem instance via a set of input samples X which describes the state of the process’
entities at certain locations and time points. Specifically, each sample x ∈ X describes an entity uniquely
identified by Ent(x) located at position Pos(x) at time Time(x). The domain-specific information for each
sample needed for inference is represented by the sample’s feature vector Feat(x). To represent the semantic
meaning of the desired predictions, we also define a set of ‘query targets’ Q. Each domain-specific query
q ∈ Q describes the relationship between the desired prediction target and the samples represented in X. For
example, in a domain in which the goal is to predict the future state of an entity in the process, each query
q would specify the entity in question, Ent(q), and the desired time point of the prediction, Time(q). In a
domain in which the goal is to predict the state of the process at some location rather than the prediction
being associated with a specific entity, such as predicting the current weather conditions at an unobserved
location, q would instead be defined by Pos(q) and Time(q).

An individual spatio-temporal problem instance is then defined by the tuple (X, Q) describing the input
samples and desired queries. Models are trained on a labeled dataset D = {⟨(Xi, Qi), Q∗

i ⟩|i ∈ {1, . . . , N}},
where each Q∗

i is the ground truths for the set of queries Qi on the observed input data Xi. The models
are evaluated on their ability to accurately predict the correct Q∗ when provided with a problem instance
(X, Q). This problem structure allows us to train models on spatio-temporal problems consisting of a
dynamic number of input samples and a dynamic number of domain-defined prediction targets. Such models
are expected to reason about the spatial and temporal relationships within the input samples X, as well as
the domain-specific relationships between those encoded input samples and the desired query targets Q.

4 Benchmark Domains

We consider three spatio-temporal problem domains to support our evaluation: Starcraft II battle unit state
prediction, weather nowcasting, and traffic forecasting. These problem domains demonstrate the models’
ability to understand qualitatively different types of processes and queries. For example, observations from
the Starcraft II domain describe the state of each individual unit present in the scene, whereas observations
from the weather nowcasting and traffic forecasting domains represent point samples of the underlying pro-
cess in question from fixed observation stations (that is, the atmospheric conditions recorded by weather
stations and the traffic information recorded by road sensors). Queries in the Starcraft II and traffic fore-
casting domains task the model with predicting the future state of a specific entity described in the input
observations, whereas the goal of the weather nowcasting problem is to use recent samples of nearby weather
conditions to predict the current weather conditions at some unobserved location. Despite the significant
differences in the underlying semantics of the input data and the structure of the queries, all problem in-
stances are described as a spatio-temporal process as defined above. Specific information about each problem
domain and how they are translated into a spatio-temporal problem instance is described below.

4.1 Starcraft II

The video game Starcraft II is a popular, challenging domain for evaluating machine learning models, most
notably used by (Vinyals et al., 2019) as a challenge problem for reinforcement learning. It is interesting
for our purposes primarily due to the dynamic nature of the military encounters represented by the game.
These encounters may consist of just a couple of opposing units fighting one-on-one, or an entire battle with
dozens of units on each side interacting with the others, making it a good platform to demonstrate how
models can handle problems consisting of differing numbers of entities. Additionally, since the game engine
reports the units’ state at a high frequency, we can sample a subset of the recorded timesteps as input to
the models to examine their ability to handle samples which are irregularly spaced in time.

The dataset is generated from a custom Starcraft II scenario in which two opposing armies fight each other
on a featureless play field. Each scenario begins with a random number of three distinct unit types placed
in random locations on the play field for both teams. The game then runs without any input, so the units
perform their ‘default’ behavior of attacking any enemy units until they die or there are no enemies nearby.
The scenario ends once all the units for one team have been defeated. Figure 1 shows an example of what a
small encounter in this scenario looks like in-game.
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Figure 1: Example SC2 scene

Name Type Size Target? Description
Owner Onehot 1 Binary representation of the team the unit belongs to
Type Onehot 3 Onehot encoding of the unit type (marine, zergling, zealot)
Heath Real 1 ✓ Current health value of the unit
Shields Real 1 ✓ Current shield value of the unit
Orientation Onehot 7 ✓ Direction the unit is facing
Position Real 2 ✓ Cartesian position of the unit on the game field

Table 2: Description of feature vector representation of each unit in the Starcraft domain. The variable is
used as a prediction query target if the Target? column is checked.

We use the PySC2 API interface provided by DeepMind (Vinyals et al., 2017) to record the state of each unit
at each timestep across 1000 runs of the scenario. See Table 2 for a complete description of the feature vector
representation for each unit. Individual problem instances are derived from this dataset by first selecting one
individual timestep from one of the scenarios. We then choose a subset of the recorded game states before
that timestep to use as ‘input frames’, and choose a subset of the timesteps after the selected timestep to use
as ‘query times’. The models are then evaluated based on their ability to use the unit information provided
from the input frames to correctly predict the state of each unit at each query time.

Specifically, when evaluating models on this domain we select the ‘input frames’ by randomly selecting up
to five timestep frames within the previous ten before the timestep in question. All entities in each selected
frame are included in the set of input samples X. We fixed the set of target ‘query times’ when training
and evaluating models on this domain unless otherwise specified. Specifically, for problem instance at time
t we task the model with predicting each unit’s state at all of the timesteps t + 1, t + 2, t + 4, and t + 7 that
exist. Each timestep is approximately half a second of in-game time, so the models are asked to predict the
future state of each unit in the scene at 0.5, 1, 2, and 3.5 seconds into the future.

4.2 Weather Nowcasting

Predicting the current atmospheric conditions at a target location given a set of current or prior weather
observations from nearby areas (‘nowcasting’) requires jointly reasoning about the spatial and temporal
relationships between the target location of interest and the provided historic weather observations. We use
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Name Metadata? Target? Description
RELH ✓ Relative Humidity
TAIR ✓ Air Temperature
WSPD ✓ Average Wind Speed
WVEC Vector Average Wind Speed
WDIR Wind Direction (heading)
WDSD Standard Dev. of Wind Direction
WSSD Standard Dev. of Wind Speed
WMAX Maximum Wind Speed
RAIN Liquid precipitation since 00 UTC
PRES ✓ Station Pressure
SRAD Solar Radiation
TA9M Air Temperature at 9m
WS2M Wind Speed at 2m
TS10 Sod Soil Temp at 10cm
TB10 Bare Soil Temp at 10cm
TS05 Sod Soil Temp at 5cm
TB05 Bare Soil Temp at 5cm
ELEV ✓ Elevation
LAT ✓ Latitude of station
LON ✓ Longitude of station
Soil Info ✓ A vector of length 18 describing soil properties

Table 3: Description of feature vector representation of each station in the weather domain. The variable
is used as a prediction query target if the Target? column is checked. Metadata? is checked if the value is
static and associated with the weather station in question.

a dataset of weather conditions recorded by a group of weather stations distributed throughout Oklahoma
to derive such a weather nowcasting problem to evaluate the models.

The dataset consists of the atmospheric conditions and associated quality metrics recorded by each weather
station in five-minute intervals throughout the entirety of 2008, as well as metadata describing each station’s
static properties (e.g. location, elevation, soil type). See Table 3 for a complete description of the feature
vector representation for each station reading. Any samples with quality metrics that report their readings
may not be accurate are removed from the dataset entirely. No imputation is performed to ‘fill in’ these
missing data points, since our models are expected to be able to process such sparse data on their own. 90%
of the stations are selected to be used as training data, while the remaining 10% are used for testing.

To derive a training problem instance from this dataset, we select a timestep t from the dataset and a subset
of the training stations to use as ‘target’ stations. The set of input samples X consists of all weather station
observations from the hour prior to the selected timestep t which do not come from a selected ‘target’ station.
The set of queries Q describes the locations of each desired nowcasting prediction, which are the locations
of all of the selected ‘target’ stations. The ground truth Q∗ is then set to be the recorded observation by
each target station at time t. Test problems are generated similarly, except that all the training stations’
samples are included in the input to X, and the model is tasked with predicting the state of the held out
test stations at the selected timestep t.

4.3 Traffic Prediction

Predicting traffic flow is a common problem to demonstrate the performance of spatio-temporal GNN models
(such as by Yu et al. (2017) and Zhang et al. (2020)), as the signals of interest are highly periodic in time and
exhibit significant spatial locality throughout the road network. We use the publicly available METR-LA
dataset (Li et al., 2017), which consists of 206 sensors distributed through the LA highway system. The
sensors report the average speed of the highway traffic at their location every five minutes. The dataset
consists of all readings between between March 2012 and June 2012.
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An individual problem instance is derived from this dataset by first selecting a timestep t in the dataset. The
traffic network’s sensor readings from the previous hour (that is, timesteps t − 11 through t) are collected
to use as the set of input samples X. The set of queries Q is defined to request the state of each sensor in
the traffic network one hour in the future (that is, timestep t + 12), and Q∗ is set to be the observed traffic
conditions at each sensor at that time. The models are evaluated on their ability to use the provided recent
traffic data to predict the speed of traffic flow at each sensor’s position in the road network at the selected
target timestep. Note that the are no held out ‘target sensors’ that are hidden from the input data, unlike
in the weather nowcasting domain. The goal of each problem instance is to use the historic data from all
sensors to predict the future state of all sensors. Instead, we select the data from every tenth week from the
dataset to use as test data, while the remaining 90% of the data is used for training.

Note that the input and query structures for this domain are fixed, unlike in the other domains. For
Starcraft, the relative position of the units is always changing, and units may disappear at any time. For
weather nowcasting, some stations’ observations may not be present in each input timestep and the requested
queries may change with each problem instance. In comparison, the input to each traffic prediction problem
is a fixed size, as each traffic sensor is present at every timestep. Additionally, the queries always represent
the same relationship– requesting the state of each sensor one hour in the future. This enables this specific
problem formulation to be fully compatible with classic temporal models, such as RNNs. However, the
spatial component of the problem is still incompatible with classic spatial models, as spatial gridding would
still be necessary and CNNs would be unable to exploit the explicitly-defined graph structure of the road
network’s spatial layout.

5 Models

Graph networks are a class of artificial neural networks which operate on graph-structured data. These
graphs consist of a set of nodes with associated feature vectors, and at least one set of edges describing the
connectivity of the nodes. In our settings, edges also have associated feature vectors describing the relative
information between the two nodes they connect.

Message-passing GNNs are a class of GNN that generally operate by using their input graph’s adjacency
information described by its edges and the attached nodes’ feature values to calculate a latent ‘neighborhood
representation’ for some (usually all) nodes in the graph. Note that the structure of the input graph in
not constrained, so a node may have any number of neighbors and associated edges which contribute to its
latent neighborhood representation. The resulting fixed-sized neighborhood representation is then combined
with the node’s feature vector to determine a new latent representation for each node which is meant to
describe the ‘context’ from its immediate neighbors as it relates to the node in question itself. This process
can be performed for any subset of nodes in the graph to calculate latent feature vector for those specific
nodes. When performed on all nodes X present in the graph, the output of this encoding process is a set
of latent feature vectors which correspond to all of the provided input nodes. By setting the graph’s node
features to be the corresponding latent feature vectors calculated by this application of the GNN, we get an
updated latent graph with identical structure as the input but with latent feature vectors which hopefully
represent useful information about each node’s neighbors. This encoding process can then be repeated with
any number of layers, similar to other DNN architectures, which effectively increases the ‘range’ at which
information can propagate throughout the graph. We represent this process of using a GNN to calculate
feature representations for a subset of nodes X in the graph G with GNN(G, X).

In contrast, calculating the latent feature vectors for the query nodes Q is done with GNN(G, Q). Note that
the output of this GNN does not directly correspond with the nodes in the input graph G, since Q is a strict
subset of the input nodes X. As a result, this process is not repeatable or layerable as the input encoding
process is. Since the output of GNN(G, Q) correspond to the queries Q, we finally pass each latent encoding
of a query node through an MLP to calculate the final prediction for each query based on the input graph.
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Expression Meaning
X Set of nodes
E Set of edges

G(X, E) Graph consisting of nodes X and edges E
exy Edge connecting nodes x and y

EdgeFeat(x, y) Feature value of exy

Table 4: Graph Encoding Notation

5.1 Graph Encoding

Since the models we examine operate exclusively on graphs, the process of deriving a graph representa-
tion of each problem instance is crucially important in enabling the models to effectively reason about the
problem. We propose a simple technique for converting such spatio-temporal prediction problems into a
multi-relational graph which captures the spatial and temporal relationships between relevant samples in
the problem instance. See Table 4 for a description of the notation used in describing this process.

The core idea is to define three different sets of edges between the samples X described in the input spatio-
temporal process instance:

• Es to represent the spatial relationships between samples on each individual timestep, such as the
distance vector between two interacting units in a Starcraft battle; and

• Et to represent the temporal relationships between samples of each individual entity across all
timesteps in which it is present, usually the difference in timestamps between ; and

• Eq to represent the domain-appropriate relationship between the problem’s input samples and the
specified query targets. For example, in the Starcraft domain in which the goal is to predict the
future state of a specific unit, Eq is defined identically to Et. In the weather domain, where our goal
is to predict the weather conditions at a unobserved location at an observed timestep, Eq is defined
identically to Es.

Specifically, the set of temporal edges Et and their values is defined as follows:

EdgeFeatt(x, y) = Time(y)− Time(x) (1)

Et = {∀x∈X∀y∈X,x ̸=y exy if Ent(x) = Ent(y)} (2)

The spatial edges are defined similarly. Due to the potentially large number of entities within a given
timestep, spatial edges are only created between samples within some specified maximum interaction distance.
Specifically, the set of spatial edges Es and their values is defined as follows:

EdgeFeats(x, y) = Pos(y)− Pos(x) (3)

Es = {∀x∈X∀y∈X,x ̸=y exy if |EdgeFeats(x, y)| < ∆max} (4)

With these two disjoint sets of edges, we can realize two different graphs that share the same set of nodes
but use the two sets of edges to represent both types of relationships: the spatial relationship graph Gs =
G(X, Es), and the temporal relationship graph Gt = G(X, Et).

Encoding an input graph G by calculating a latent feature vector for each node X in the graph requires
employing the spatial and temporal GNN on their respective graph representations, as well as MLP applied in
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Algorithm 1
function SpatioTemporalEncoder(X, Es, Et, GNNs, GNNt, NodeMLP )

Gs ← G(X, Es)
Y ← GNNs(Gs, X)
Gt ← G(X, Et)
Z ← GNNt(Gt, X)
X ′ ← NodeMLP (X||Y ||Z)
return X ′

end function

Algorithm 2
function SpatioTemporalQuery(X, Eq, GNNq, QueryMLP )

Gs ← G(X, Eq)
Y ← GNNq(Gs, X)
P ← QueryMLP (Y )
return P

end function

parallel to each latent node representation to combine the output from each GNN into a latent representation
for each node that combines information from its spatial and temporal neighborhoods.

The resultant latent encoding of the samples X ′ can then be fed into the next layer of spatial/temporal
GNN pairs. See Algorithm 5.1 for a description of how one such layer is executed. Note that Es and Et are
constant across all layers, and therefore only need to be determined once per problem.

Finally, we must use the resulting latent encoding of each sample to derive a latent encoding of each desired
query target q ∈ Q. As before, we define a set of edges Eq that describes the relationship between the
encoded samples X and the desired queries Q. The specific procedure for defining Eq is domain specific, as
it depends on the type of relationship between the samples and the queries. Note that Eq must be a bijection
between X and Q, representing the fact that the result of each query q is exclusively dependent on the latent
encoding of the input samples, and not dependent on the other contents of Q itself. See Algorithm 5.1 for a
description of how the query predictions P are derived from the graph from the encoding layers.

5.2 GraphConv

GraphConv (Kipf & Welling, 2016) is a simple message-passing GNN model designed to approximate a full
spectral convolution of the input graph. This approach exclusively uses adjacency information from the
graph’s set of edges to determine how nearby nodes’ features should be combined.

The GraphConv update rule is defined as follows:

Xℓ+1 = σ
(

D̃− 1
2 ÃD̃− 1

2 XℓW ℓ
)

(5)

Expression Meaning
Xℓ Input node features at layer ℓ
A Adjacency matrix
D Degree matrix

W ℓ Per-layer trainable parameter matrix for layer ℓ

Table 5: GraphConv notation
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Expression Meaning
Xℓ Node features at layer ℓ
a Aggregation function – combines effects with their associated ob-

jects
ϕO Object model – determines the future state of each object and its

associated interactions
ϕR Relational model – determines the effect of each interaction
m Neighborhood/marshalling function – determines interactions and

relative distances

Table 6: Interaction network notation

Where X is a n × f1 matrix of the nodes’ feature values. Ã is the n × n adjacency matrix A with added
self-connections, that is Ã = A + IN . D̃ is the n × n degree matrix, defined as Dii =

∑
j Aij . W ℓ is the

n× f2 weight matrix for layer ℓ.

Notably this approach completely ignores any features associated with the graph’s edges. In our setting,
these edges are assigned feature values that explicitly describe the spatial or temporal relationship between
the two samples. Therefore, GraphConv cannot take advantage of this information directly. It must be
inferred via some implicit pairwise comparison between a node and its neighbors’ features. However, since
the neighbors’ features are collected purely via the operation multiplying the normalized adjacency matrix
D̃− 1

2 ÃD̃− 1
2 by the nodes’ feature values, there is no mechanism by which individual neighbors’ features

can be processed differently based on their relation to the ‘central’ node. Any such logic must therefore be
expressed by the effects of the weight matrices W on the weighted combination of neighborhood and node
features, which is unlikely to be an efficient or effective way to express those functions.

5.3 Interaction Networks

Interaction networks (Battaglia et al., 2016) are a general class of GNN designed to operate on problems
involving many individual interacting entities. A single Interaction Network layer is described as follows (see
Table 6 for notation):

Xℓ+1 = ϕO

(
a

(
Gℓ, ϕR

(
m

(
Gℓ

))))
(6)

In our setting, each function is defined as follows:

• m, the marshalling/neighborhood function, which operates on the provided graph G(X, E). E
is one of Es, Et, or Eq depending on the context in which the layer is being applied. The
output of m represents each edge (or relation) in the graph with a tuple consisting of the
source node’s feature vector, the destination node’s feature vector, and the edge feature it-
self describing the relative information between those two nodes. Specifically, m(G(X, E)) =
{[x, y, EdgeFeat(x, y)] | ∀x∈X∀y∈X,y ̸=x, s.t.exy ∈ E}.

• ϕR, the relational model, which transforms each relation tuple from m into a fixed-length latent
representation of that relation’s ‘effects’. Specifically, ϕR is implemented with a MLP that is applied
in parallel to each relation tuple.

• a(G(X, E), R), the aggregation function, performs two tasks: combining the variable number of la-
tent relational effect vectors associated with each node into a single fixed-size ‘neighborhood effect’
vector, and combining this ‘neighborhood effect’ vector with the node’s own latent feature repre-
sentation. Specifically, for each node x ∈ X, Nx =

∑
r∈Rx

r, where Rx is the set of relations in
R which are associated with edges in E directed towards node x. The output of the aggregation
function is then a(G(X, E), R) = {[x, Nx] | ∀x∈X}, a set of pairs consisting of each node’s feature
representation and its aggregated relation latent vectors describing all its neighbors.
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• ϕO, the object function, which transforms the pairs of node features and associated aggregated
neighborhood features into a final latent representation for that node to be provided to the next
layer. Specifically, ϕO is implemented with an MLP that is applied in parallel to each object-
neighborhood pair.

At a high level, applying one layer of an interaction network performs the following steps:

• use the edge information provided by the input graph to determine all the neighboring nodes for
each node in the graph;

• transform each neighbor relation into a latent feature vector based on the main node’s value, the
neighboring node’s value, and the connecting edge’s value;

• sum together all latent neighbor relations associated with each node into a single fixed-size neigh-
borhood representation;

• finally, combine each node’s latent feature representation with its neighborhood representation to
produce an encoded latent feature representation for each node.

5.4 PointConv

PointConv (Wu et al., 2019) is a convolutional neural network designed to operate on point clouds rather
than the image or voxel data that would be consumed by a traditional CNN. Whereas CNNs learn a set
of discrete filters to apply over regularly-structured hyper-rectangles (usually 2D/3D images), PointConv
instead learns a filter function represented by an MLP which transforms a distance vector between two
points into the filter value for that location. The authors prove that PointConv is equivalent to traditional
pixel-based image convolution

At a high level, PointConv performs the following steps:

• determine the ‘neighborhood’ of each point in the cloud by collecting all other points within a certain
distance;

• calculate the relative distance between each point and each point in its neighborhood;

• transform each relative distance vector into a filter vector using a MLP;

• perform a matrix multiplication between the filter vector and its associated neighbor’s feature vector;

• sum all resulting filtered neighbor vectors into a single fixed-size neighborhood representation;

• finally, combine each point’s latent feature representation with its neighborhood representation to
produce an encoded latent feature representation of each point.

Although it isn’t presented as such in the paper, PointConv can also be described in terms of being a graph
network. The only significant difference between the PointConv and Interaction Network algorithms is how
the neighborhood feature vector is calculated by the relational model ϕR. While the interaction network
simply calculates each neighbor representation with a MLP such that r = MLP (x||y||EdgeFeat(x, y)),
PointConv calculates each neighbor representation as r = F (yTW (EdgeFeat(x, y))), where W is a MLP
that transforms an edge feature vector into a fixed-size filter vector, and F is a ‘flattening’ function that
reshapes an n×m matrix into a 1× (n×m) vector.

Notably, this filtering-based approach removes the neighbor vector’s dependency on the feature value of the
point (or node) for which the neighborhood is being calculated. As the filter value is only dependent on the
relative distance between two samples, any pair of samples with the same relative distance will also have the
same filter value returned by W .
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5.5 PointConv with Attention

As described above, the filters calculated by PointConv do not depend on the feature value of the node
x or its neighbor x′. While this allows us to explicitly calculate filter weights for each neighbor, it seems
reasonable to expect that in some domains these neighbors should be filtered differently depending on both
their feature descriptions.

We can extend PointConv to have such capabilities by applying a simple attention mechanism to the
weight calculation, as described by Horn et al. (2019). Instead of calculating the weights exclusively with
W (EdgeFeat(x, y)), we first calculate an attention vector a = softmax(A(Feat(x)||Feat(y))), which uses
an MLP A to calculate a vector of a small number of normalized scalar weights depending on the comparison
between the node x and its neighbor y. We then multiply the filters by each value in the attention weights
as follows: r = F (x′TF (aTW (EdgeFeat(x, y)))).

Note that now our neighbor representation r for a given node x and neighbor y is now dependent on the
values of x, y, and the relative distance between them, EdgeFeat(x, y). However, instead of accomplishing
this by simply concatenating these values together and applying an MLP as Interaction Networks do, we
explicitly learn a set of spatial filters that depend exclusively on the relative distance between the samples,
and a set of weights that depend exclusively on the two samples’ feature values.

6 Hyperparameter Selection and Training

The performance of deep learning models, is highly dependent on the hyperparameter configuration used
for training. In some cases, the effect of thorough hyperparameter optimization on a model’s observed
performance may dominate the performance impact of that model’s structural or procedural differences
from the other models it is being compared to. As a result, when comparing different models’ performance
it is necessary to ensure that each model receives similar amounts of hyperparameter tuning effort to ensure
that the comparison’s results represent the differences in the models’ inherent properties rather than the
differences in their high-level training procedures. This can be problematic since many works presenting
novel models do not make an attempt to quantify how much time or effort was put into determining the
hyperparameters for training the model being evaluated. Future works that then use such reported results as
comparison points cannot guarantee that the models being evaluated in the comparison are ‘evenly matched’
in terms of hyperparameter optimization effort. The widespread assumption is then that any presented results
are from a hyperparameter configuration which ‘maximizes’ the performance of the model in question. This
assumption incentivizes authors to commit significant time and resources to optimizing hyperparameters to
improve their proposed model’s performance without necessarily recording or describing that optimization
process, since it is generally assumed that the comparison models (whose performance frequently must be
matched for the work to appear relevant) also had significant time and resources committed to maximizing
their performance.

We intentionally take a different approach for our ‘stake-free’ setting by defining a single hyperparameter
selection procedure to be applied to each instantiation of each model in the evaluation. Explicitly making
the hyperparameter selection process part of the evaluation procedure allows us to guarantee that each
model received a fair amount of hyperparameter tuning ‘effort’ since we can demonstrate that the selection
process and resources used were the same for all models. The simplest common approach for hyperparameter
optimization is grid search or random search (Bergstra & Bengio, 2012), in which every hyperparameter is
enumerated and regular or random samples drawn from the resulting hyperparameter configuration space are
evaluated with an auxiliary training procedure. The hyperparameter configuration with the best empirical
performance demonstrated by the auxiliary training procedure is then selected to be the representative
hyperparameter setting for the model in question. This approach can be very expensive due to the massive
number of training runs that must be executed to ensure good coverage of the hyperparameter configuration
space. Since we need to perform the hyperparameter selection for each size, for each model, for each domain,
performing a complete grid search is infeasible.

To determine a reasonable hyperparameter settings within a reasonable amount of time, we fix most training
hyperparameter values to commonly-used defaults, and focus exclusively on determining an appropriate
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learning rate schedule for each model instantiation, as the learning rate has been shown to generally be
the most impactful hyperparameter in determining model performance (Smith, 2017). Specifically, for all
experiments we use the ADAM optimizer (Kingma & Ba, 2014) as implemented by PyTorch (Paszke et al.,
2019), using its default parameters of a weight decay of 0, β1 = 0.9, and β2 = 0.999. We use a cyclic cosine
annealing learning rate schedule as described by Loshchilov & Hutter (2016), with Tmult set to 2 and T0
set to 1

7 th of the total number of epochs to ensure that the schedule can complete three periods during
each training run. The cosine annealing schedule’s minimum and maximum learning rates are determined
experimentally for each model instantiation using a modified learning rate test described below.

6.1 Checkpoint Learning Rate Test

Smith (2017) describes a procedure for quickly determining a range of usable learning rates for training
any given network. The key idea is to perform an auxiliary training run on a randomly initialized network
using the intended optimizer, while exponentially interpolating the optimizer’s learning rate from a low
value known to have no meaningful impact on the network’s performance to a high value known to cause
the network to ‘explode’ and lose performance. This is in opposition to the usual approach for training a
deep network, in which we would start with an appropriately large learning rate to allow the optimizer to
find a promising parameter region, then gradually lower the learning rate to ‘refine’ its behavior with smaller
parameter updates. Instead, the goal of a learning rate test is to quickly ‘scan’ through a wide range of
plausible learning rates and examine the resulting effect on the performance behavior on the model being
tested. The expectation is that there will be three regions which can be identified from these results:

• a ‘too cold’ region in which the learning rate is too low to impact the model’s parameters, and the
observed training loss ‘flatlines’;

• a ‘just right’ region in which the learning rate is effective and enables the model to improve, causing
the observed training loss to fall;

• and a ‘too hot’ region in which the high learning rate causes the parameter updates to ‘explode’ the
model, causing the observed training loss to quickly increase.

One can then assume that any learning rate from the ‘just right’ region is appropriate to use when training
the final model.

This simple learning rate test procedure ignores some crucial facts about training deep networks. Specifically,
the concept of a learning rate schedule is validated by the observed evidence that the most effective learning
rate for an optimizer can change significantly over time as the model moves into effectively different regions of
its parameter space. However, the learning rate test seems to make the opposite assumption– that the most
effective learning rate does not change even as we update the model’s parameters. By constantly updating
the model’s parameters as the learning rate is varied throughout the test, the test is essentially modifying its
underlying problem domain while simultaneously searching for a solution within it. This calls into question
the general utility of the results of such a test.

Fortunately this shortcoming is easy to address. We propose a simple modification to the learning rate test,
the ‘checkpoint learning rate test’, in which the network’s parameters are reset to a fixed state after each
reported training loss. This change significantly reduces the ‘domain shift’ effect imparted by constantly
updating a single model throughout the test. Instead, by constantly resetting to a checkpoint the observed
model’s parameters are never able to get too ‘far’ from the checkpoint model’s parameters, increasing the
chance that the test’s results represent the expected behavior of the checkpoint model. Algorithm 3 describes
our proposed algorithm for performing the checkpoint learning rate test, while Algorithm 5 describes the
procedure used to determine the appropriate minimum and maximum learning rate from the output of a
learning rate test.

Adding a checkpoint addresses the learning rate test’s ‘domain shift’ problem, but still does not change the
fact that effective learning rates generally change over time as a deep model is trained. If the checkpointing
learning test is run with a randomly initialized parameter configuration as the checkpoint, then its results

13



10 7 10 5 10 3 10 1 101

Learning Rate

60

40

20

0

20

40

60

80

100

Lo
ss

 C
ha

ng
e

Old
Random
Demo

Figure 2: The results of three styles of learning rate test applied to the same network architecture. Old
is the classic learning rate test, Random is the random checkpoint test, and Demo is the ‘poorly trained’
checkpoint test. Note the clear area of improvement for the Old and Random tests, while Demo has a much
less clear area of improvement and ‘explodes’ at a much lower learning rate.

will represent the training characteristics of a randomly initialized network, such as one at the very beginning
of a training run. However, the learning rate test is intended to determine an appropriate learning rate range
to use throughout the entire training procedure, not just the very beginning. In fact, since networks tend to
become more sensitive to the learning rate being used as they are trained, exclusively using the network’s
random initial conditions to determine acceptable learning rates for the entire training procedure may be of
limited value.

To ensure the results of the learning rate test are useful for training across more of the training phase,
we first apply a common auxiliary training procedure to produce a ‘poorly-trained’ network. Using this
‘poorly-trained’ network as the checkpoint results in an estimated learning rate range which is much more
appropriate for the entire training process, since its parameter configuration is much closer to the state the
network will be in during training compared to the initial random state. We found that networks trained
with the learning rate range derived from this ‘poorly trained’ network were much more likely to converge
in some domains than networks trained with the learning rate range derived from the random checkpoint
or classic learning rate test. Figure 2 demonstrates this by showing the results of a learning rate test with
three different approaches: the classic learning rate test, the test with random checkpointing, and the test
with ‘poorly trained’ checkpointing.

This demonstrates that the effective learning rate range for a model changes as the model’s parameters are
updated during training. From this evidence, seems reasonable to then conclude that a single learning rate
test is unlikely to be able to determine an appropriate learning rate for the entirety of the training procedure.
However, since our modified learning rate test does not suffer from the same failures as the original learning
rate test, we employ it to determine the learning rate ranges for every model instantiation across all domains.
Further examining and developing this style of hyperparameter test is left to future works.

7 Results

In this section we present the results of our empirical investigation. We first, present an overall summary of
the main observations. Next we provide additional details for each of the benchmark problems.

7.1 Overall Performance

Table 7 shows the loss statistics for all network architectures and sizes on all domains. In it, and all other
figures in this paper, the PointConv-based network is abbreviated as ‘PC’, PointConv with attention is
abbreviated as ‘PCA’, GraphConv is abbreviated as ‘GC’, and Interaction Network is abbreviated is ‘Int’.
Rather than report mean test loss, to avoid sensitivity to outlier predictions, we report the 25%, 50%, and
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Algorithm 3 Checkpoint LR Test
function CheckpointLRTest(net, θ, dataset)

SetNetworkParams(net , θ)
batchCount ← 0
losses ← empty list
nextReport ← reportEvery
for batch in dataset do

batchCount ← batchCount + 1
pred ← Predict(net, batch)
loss ← CalculateLoss(pred, batch)
lr ← LRSchedule(batchCount)
UpdateParams(net, loss, lr)
Append loss to losses
if batchCount ≥ nextReport then

nextReport ← nextReport + reportEvery
SetNetworkParams(net, θ)
RecordLoss(lr, mean(losses))
losses ← empty list

end if
end for

end function

Algorithm 5 Learing Rate Calculation
function CalculateLRRange(lrs, losses, margin)

baseline ← losses[0]
highThresh ← baseline × margin
highIdx ← min i such that losses[i] > highThresh
lrs ← lrs[0:highIdx]
losses ← losses[0:highIdx]
lowScores ← [Score(i, lrs, losses, baseline) for i in 0..length(losses)]
lowIdx ← argmaxi lowScores[i]
lowLR ← lrs[lowIdx]
highLR ← lrs[highIdx]
return (lowLR, highLR)

end function
function Score(idx, lrs, losses, threshold)

target ← [loss < threshold for loss in losses]
pred ← [i ≥ idx for i in 0..length(losses)]
score ← F1Score(pred, target)
return score

end function
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Domain SC2 Weather Traffic
Network P25 P50 P75 Mean %Fail P25 P50 P75 Mean %Fail P25 P50 P75 Mean %Fail

GC-Small 1.37 5.85 14.76 9.48 0.0 2.38 5.85 13.05 10.07 0.2 0.77 3.07 14.06 45.92 0.0
Int-Small 0.20 2.43 9.61 6.50 0.0 4.89 9.64 18.31 14.09 0.4 0.70 2.73 11.03 43.95 <0.1
PC-Small 0.63 4.18 12.15 7.97 0.0 2.77 5.69 11.22 9.00 <0.1 0.77 2.81 11.24 45.17 <0.1

PCA-Small 0.33 3.04 10.64 7.10 0.0 21.48 34.05 53.13 41.76 0.4 0.51 2.17 10.69 42.26 0.2
GC-Med 0.84 4.81 13.15 8.51 0.0 1.26 2.63 5.49 4.72 <0.1 0.83 3.22 13.78 45.79 <0.1
Int-Med 0.14 2.01 8.79 6.06 0.0 0.61 1.42 3.40 3.16 0.0 0.68 2.86 13.69 45.39 0.0
PC-Med 0.36 3.26 10.78 7.17 0.0 0.43 0.89 1.98 1.94 0.0 0.40 1.88 9.68 36.44 0.9

PCA-Med 0.25 2.68 10.02 6.73 0.0 20.67 34.40 53.49 41.74 0.3 0.41 1.96 9.89 37.57 0.8
GC-Large 0.74 4.52 12.71 8.26 <0.1 5.43 9.11 17.06 20.98 8.7 0.39 2.08 13.55 46.75 0.0
Int-Large 0.14 1.85 8.40 5.85 0.0 0.91 1.91 3.95 3.54 0.0 1.76 5.63 19.08 47.16 0.0
PC-Large 0.27 2.81 10.10 6.79 0.0 1.32 2.79 5.85 4.84 0.8 0.42 1.97 9.86 38.44 0.8

PCA-Large 0.21 2.45 9.48 6.44 0.0 7.58 14.06 24.30 18.11 0.2 0.54 2.38 10.45 43.05 0.4

Table 7: Loss Table

75% percentiles of loss values among all individual predictions each model made on each domain, in columns
labeled P25, P50, and P75. We then identify ‘bad’ predictions by identifying all predictions with a loss 100x
higher than the 75% percentile of the loss values. These predictions are labeled as failures, and the column
labeled %Fail shows the percentage of all predictions for that model that were identified as bad. Finally, we
report the mean of all losses not identified as bad in the column labeled Mean.

GraphConv is clearly not competitive with the edge-aware GNN models overall. Its performance is especially
poor on the Starcraft 2 domain, in which being able to differentiate near and far units is critical to predicting
what action each unit will take. This supports the idea that edge-aware GNN models should be applied to
graph problems with highly dynamic structures, whereas GraphConv may be better suited for graphs which
always have the same or similar structures.

Accordingly, Interaction Networks dominate the Starcraft 2 domain, suggesting that their black box MLP
relational model is significantly more performant that the decomposed versions used by PointConv. The
Interaction network based models seemed to perform best at their largest size, dominating both the Starcraft
2 and Weather Nowcasting domains among large models. This may suggest that the black box relational
model approach is more efficient at higher parameter counts than the biased convolution-style approach
employed by PointConv, but more research would be necessary to investigate this effect in detail.

PointConv with Attention significantly outperforms PointConv in the Starcraft 2 domain, but appears to
have completely failed on the weather problem. With a 25th percentile loss more than 10x higher than the
other models for the small and medium sizes without any extreme prediction errors resulting in failures, it’s
clear that almost all of the PointConvAttention’s predictions in this domain are useless. It’s unclear why the
addition of an attention mechanism may have caused this, considering that the extremely similar PointConv
model performs well on the same domain.

The PointConv models seem to perform their best in the Traffic domain and the Weather domain (other
than the large size). This may be related to the fact that these domains both have static graph structures,
which may favor PointConv’s approach of explicitly learning spatial filters, whereas in the Starcraft 2 domain
which has extremely dynamic graph structures and entity interactions the Interaction Networks, with their
explicit pairwise comparisons between samples, are much more performant.

Overall the results confirm our suspicion that when trained with equal amounts of hyperparameter tuning
and training effort, no one GNN model dominates the others across all domains. Instead, the most important
thing is to select the model with the inductive bias that best matches the properties of the problem instances
that the model will be tasked with. The evaluation results suggest that PointConv-style, convolution-inspried
architectures may be preferable when the graph structure is fixed, while the more entity-focused Interaction
Networks may be a better fit for problems with highly dynamic graph structures.

7.2 Starcraft II

Training Curves. Figure 3 shows the average training loss across all training runs for each architecture
instantiation on the Starcraft 2 dataset. The models’ ordering is identical to that observed when evaluating
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Figure 3: Average training loss plots for all instances of each model trained on the SC2 dataset.

them on the test data, suggesting no overfitting is occurring. PointConv with Attention is noticeably
unstable during training, however. This may be due to the learning rate test failing for this architecture and
calculating too high of an initial learning rate, since the loss spikes seem to occur shortly after the cyclic
learning rate schedule returns to its highest learning rates.

7.2.1 Spatial Filter Visualization

Figure 4 shows several of the continuous spatial filters learned by a PointConv model trained on the Starcraft
2 dataset. The filters seem to focus on the area in a tight radius around the unit in question with the further
positions generally being constant, especially in the early layers where sufficiently far units will not have any
impact on the unit in question’s future state. This shows that the network is learning meaningful filters to
gather information about the nearby units. If the learned filters were uninformative, the filters would appear
to be a random projection– instead, we can clearly identify shapes that we know are directly relevant to
the underlying spatio-temporal process’ behavior. Note that the PointConv architectures are the only ones
capable of producing such visualizations, since GraphConv and Interaction Networks do not learn a explicit
weight function.

Attention. As with PointConv’s learned weights, PointConv with Attention’s attention mechanism can also
be demonstrated by visualizing the attention weights assigned to each unit in a neighborhood. We select a
random timestep and three random units, then highlight all the other units in its neighborhood with a color
corresponding to their attention weights. As our attention mechanism learns three different weights, each
of which ranges between 0 and 1, we just display each triple of attention weights as its corresponding RGB
color.

Figure 5 demonstrates that PointConv with Attention learns meaningful domain-specific attention weights.
Specifically, the nearby enemy units clearly receive a lot of attention, while more distant units and friendly
units tend to be less active. This lines up perfectly with what we expect, as the default behavior of all units
in Starcraft 2 is to run towards and attack any enemy unit within close range. The significant performance
gain over vanilla PointConv as well as the attention mechanism’s clear understanding of the dynamics of the
domain clearly demonstrate that this architecture is a good fit for the Starcraft 2 domain.

7.2.2 Query Timestep Distribution

One of the most notable features about our spatio-temporal problem setting is that the input and query
target timesteps are not fixed. Rather, the model’s capabilities and performance depend on the distribution
of inputs and queries it was trained on.

We examine the ‘out-of-bounds’ behavior of these models by evaluating them on a modified Starcraft II
dataset in which they must predict the future state of timestep offsets that were not present in the training
dataset. Specifically, we show their average prediction loss for each query target timestep from T + 1 to
T + 12, despite the fact that the networks were only trained on targets T + [1, 2, 4, 7].

Additionally, we train these models in two addition settings: ‘TwoPred’, in which they are trained on a
modified dataset where the query target offsets are set to T +[2, 7]; and ‘OnePred’, in which the query target
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Figure 4: Filters learned by a PointConv model trained on the Starcraft 2 prediction problem.

Figure 5: PointConv Attention visualization. The ‘main’ unit is circled in pink. Each unit in the neigh-
borhood is highlighted with a solid circle colored according to its attention weights. Each unit icon’s shape
indicates its unit type, while its color indicates its team.
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offset is only T + 7. Figure 6 shows a bar chart demonstrating the loss for each model trained on each query
distribution on these out-of-bounds query target timesteps.

GraphConv. The GraphConv model appears to be least affected by being trained or evaluated on differing
query timesteps. Despite no GraphConv having never observed any query timesteps above T + 7, they do
not exhibit any extreme prediction errors that are indicative of overfitting. However, the performance of
GraphConv models seems to increase when trained on smaller number of query target timestep offsets. This
is not desirable behavior, since we would hope that giving the models more information on how the units
change over time would lead to a better model of the units’ behavior. Instead, the ‘OnePred’ model has
clearly specialized to only focus on the specific timestep it was trained on (T + 7), and performs slightly
worse on any other timestep. One would expect that ‘TwoPred’ should out-perform ‘OnePred’ on timestep
T + 2, as ‘OnePred’ never been trained on targets at T + 2. Instead, ‘TwoPred’ preforms worse at almost all
timesteps. Similarly, the ‘default’ setting (training on T + [1, 2, 4, 7]) performs worse than its more restricted
counterparts despite effectively receiving more training data.

This suggests that GraphConv is not able to effectively distinguish between the different query targets it is
trying to predict. This aligns with our intuition that GraphConv is significantly hampered by being unable
to explicitly exploit edge features in a graph. Instead, the GraphConv model seems to have fallen back to
underfitting behavior, in which it is unable to distinguish between the different query timestep offsets it
must predict. In this mode of operation the loss would be expected to decrease as the diversity between the
training targets decreases, which is exactly what we observe. This result shows that GraphConv is not an
effective model to employ in this setting, and likely is ineffective on most graph problems with meaningful
edge features.

Interaction Networks. The interaction networks’ performance is nearly indistinguishable across all
timesteps when trained on the default and ‘TwoPred’ settings. This suggests that both networks are able
to learn similar, meaningful unit state transition models despite being trained on different query target
timesteps.

However, the interaction network trained on the ‘OnePred’ setting has clearly overfit. It is effectively useless
at predicting unit states at any timestep other than T + 7, and only performs slightly better than the other
models at its one training target T +7 itself. Note that adding just one additional query target during training
(that is, query target offsets T + [2, 7] instead of just T + 7) causes the model to go from overfitting on a
single timestep to learning a general transition model which performs reasonably well across all timesteps.
This seems to validate that applying graph models to this kind of graph realization of a spatio-temporal
process is an effective way to enable the models to understand the process’ dynamics in general.

PointConv. The PointConv networks’ behavior is similar to the interaction networks’ behavior, but Point-
Conv appears to be more prone to overfitting behavior on unseen timesteps. The model trained on the
default setting performs well up until T + 8, the first timestep it has never encountered during training,
after which the prediction error rapidly increases. Alternatively, the model trained on the ‘TwoPred’ setting
(that is, only on T + [2, 7]) exhibits overfitting behavior at the very earliest timestep it’s never seen before
(T + 1), but appears to do a better job at making coherent predictions for more distant targets compared to
the default setting. Finally, the model trained on the ‘OnePred’ setting has completely failed to train and
produces erroneous predictions at all timesteps on the test problem instances despite achieving reasonable
performance during training.

Both these behaviors – a discrepancy between training and test performance, and training on more data
resulting in worse general-case performance – are indicators of overfitting. This suggests that PointConv’s
learned filters, that it must rely on to reason about relationship between queries, is not as effective at
generalization as the interaction network approach of replacing the filtering mechanism with a black-box
MLP.

7.3 Traffic Prediction

Training Curves. Figure 7 shows the average training loss across all training runs for each architecture
instantiation on the traffic prediction dataset. Based on the lack of clear convergence among any of the
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Figure 6: Plots showing the average prediction loss for each model type for each timestep offset between
T+1 and T+12.
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Figure 7: Average training loss plots for all instances of each model trained on the traffic prediction dataset.

models trained, it seems likely that the models could be significantly further improved with additional
training time.

Baseline Comparison. To evaluate the models’ usefulness, we compare its average performance to a simple
baseline. Specifically, we use the baseline which simply predicts that the traffic speed at any given sensor
in one hour will be the same as the sensor’s current recorded speed. Interestingly, while this baseline model
significantly outperforms all deep models in its first, second, and third quantile performance, the deep models
significantly outperform the dumb baseline on average.

Individual Sensor Predictions. To gain a better understanding of the deep models’ behavior and perfor-
mance, we plot the predictions of each medium-sized network for a single sensor throughout one entire day.
By comparing the predicted traffic speed to the actual signal, we may be able to gain some insight into how
or why each model is failing.

Figure 8 shows an entire day’s worth of predictions from each model for three different sensors. The one-hour
delay from the baseline model is clearly visible, causing it to always miss quick changes in traffic speed by
an hour. However, the deep models aren’t much better at this. For example, in Figure 8(a), while they seem
to start predicting a declining speed well before the baseline is able to, indicating they’re using information
from surrounding sensors to detect the oncoming traffic jam before it can be observed at the sensor, the
prediction is still far off from the actual speed at that time and the model clearly ‘follows’ the baseline
model’s plunge in predicted speed as soon as it has access to sensor readings showing that traffic is stopped
now. Additionally, the deep models seem to constantly predict slightly too low of a speed, as if they are
hedging their bets expecting a traffic jam to materialize. These two observations may be a demonstration
of the commonly observed phenomenon in which graph networks tend to ‘underfit’ or produce decent but
clearly biased results in this style of prediction problem. It’s unclear whether this issue may disappear with
more training or if it is inherent to the GNN architecture itself.
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Network P25 P50 P75 Mean
Nearest 0.75 2.10 5.88 7.59

GC-Small 1.78 3.55 7.60 7.54
Int-Small 1.69 3.35 6.73 7.15
PC-Small 1.77 3.40 6.79 7.26

PCA-Small 1.44 2.99 6.62 7.02
GC-Med 1.85 3.64 7.52 7.57
Int-Med 1.67 3.43 7.50 7.43
PC-Med 1.28 2.77 6.30 6.90

PCA-Med 1.30 2.83 6.37 6.92
GC-Large 1.26 2.92 7.46 7.31
Int-Large 2.69 4.81 8.85 8.45
PC-Large 1.31 2.84 6.36 6.99

PCA-Large 1.50 3.13 6.55 7.14

Table 8: Table showing the 25%, 50%, 75% percentile, and mean prediction error for each model in MPH.
Bolded entries indicate the model beat the baseline’s performance.
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(a) Sensor 717446

0 6 12 18 24
Time of day (hours)

0

10

20

30

40

50

60

70

Pr
ed

ict
ed

 tr
af

fic
 sp

ee
d 

(m
ph

)

Actual
TPC-Med
TInt-Med
Mean

(b) Sensor 717447
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(c) Sensor 773869

Figure 8: Each model’s predicted traffic speed throughout an entire day for individual sensors. Black line is
the target signal.
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Figure 9: Average training loss plots for all instances of each model trained on the weather dataset.

7.4 Weather Nowcasting

Training Curves. Figure 9 shows the average training loss across all training runs for each architecture
instantiation on the weather prediction dataset. However, these training plots clearly indicate there’s signif-
icant training instability. This suggests a failure in the learning rate test’s ability to consistently determine
appropriate hyperparameters for training. Clearly the learning rate is significantly too high for much of the
training– but once it lowers towards the end, the networks’ behavior seem to recover.

Station Dropout. In domains such as Starcraft II each observation directly represents an individual unit’s
state. Adding or removing a unit and its corresponding observations from a Starcraft II prediction problem
will significantly change the expected dynamics of the process, since the units’ behavior is highly dependent
on the presence of other units in the scene. In contrast, in the weather problem domain each observation
from a station is a point sample of the underlying continuous process of interest, the atmospheric conditions
within the area. Since we cannot directly observe the entire the process, models must instead infer its overall
state from these individual point samples.

Ensembling is a common technique to increase prediction performance by aggregating several predictions
from multiple models instead of relying on a single model’s prediction. Usually this is accomplished by
training multiple models and averaging their predictions together. The graph structure of our problem and
our understanding of the semantics of the domain suggest a different approach. We can instead provide
a single model with several augmented problem instances whose input data has been modified while the
queries are fixed. This single model’s predictions on different realizations of the original input data can then
be averaged together to perform ‘self-ensembling’.

In this domain, we can augment a problem instance by randomly removing a percentage of the input samples
while keeping queries unmodified. We demonstrate this self-ensembling approach by having each model
produce prediction for five augmented problems derived from the original problem instance, and average
the model’s predictions together to produce the final prediction. Table 9 shows the mean and median
performance of each model architecture as the percentage of dropped input samples is set to values between
0% (no augmentation) and 50%. We also show the performance of each architecture when trained with a
20% drop rate (models in the table postfixed with Drop20).

Among all models, increasing the amount of test-time station dropout generally decreases the model’s predic-
tion performance. However, the interaction network models trained in the 20% dropout setting significantly
outperform the interaction network model trained on the un-augmented dataset regardless of the amount of
test-time dropout. PointConv trained with dropout performs slightly worse than its default setting at 0%
test-time dropout, but as the amount of test-time dropout increases it demonstrates a significant advantage
over the model trained in the default setting. This is most obvious at 50% dropout where the default Point-
Conv appears to be exhibiting overfitting behavior and producing erroneous predictions, while the model
trained with dropout is able to outperform every other model.

These results show how applying appropriate graph data augmentation during training and evaluation effects
the performance of these graph models. The models’ overall performance did not significantly improve when
only test-time data augmentation was applied. However, training with this data augmentation does not

22



Test-time Dropout 0% 10% 20% 50%
Network P50 Mean P50 Mean P50 Mean P50 Mean
GC-Med 2.57 4.64 2.55 4.59 2.72 4.87 3.47 7.54
Int-Med 1.46 3.23 1.85 3.76 2.30 4.45 5.61 9.13
PC-Med 0.78 1.89 1.21 2.56 1.99 3.62 11.02 24.82

GC-Med-Drop20 2.93 5.18 2.72 4.92 2.68 5.06 3.30 8.51
Int-Med-Drop20 1.22 2.90 1.40 3.09 1.61 3.37 2.40 4.61
PC-Med-Drop20 0.90 1.97 1.03 2.21 1.21 2.54 2.17 4.10

Table 9: Table demonstrating the change in each model’s test loss as station dropout is increased. Columns
show the median and mean loss as the test-time station dropout is raised from 0% to 50%. Models with
Drop20 appended to their name were trained with 20% station dropout.

significantly negatively impact the models’ best-case performance while greatly increasing their ability to
make effective predictions as the characteristics of the input data changes.

8 Evaluation Platform

One of the main goals of this work is to provide an approachable software platform to allow others to fully
reproduce the experiments run for this paper, or modify and extend them if desired. In contrast to some
other research codebases, we define general implementations of each model type and problem domain. Our
training engine loads human-readable configuration files which describe the desired configurations for the
model, problem, and training hyperparameters for the experiment it represents. This approach of separating
the model and problem implementations from the specification of each experiment or training run reduces
the barriers to running large sets of diverse experiments, such as those examined in this paper. Specifically,
we have published a codebase which includes:

• Scripts to fetch each dataset used in the evaluation;

• Implementations of dataset loaders which derive graph representations of spatio-temporal problems
from the raw datasets;

• Implementations of GraphConv, PointConv, Interaction Networks, and all of their components;

• Experiment definition files which configure the datasets and networks to train all the models used
in this evaluation;

• Scripts to collect the results from training and produce all the plots and tables included in this
paper;

• Instructive documentation on how to set up and run the code.

The repository for this project can be found at [TODO: removed for anonymous review].

9 Conclusion

We proposed a simple procedure to encode a spatio-temporal problem using a graph structure, including
describing dynamic domain-specific queries. This graph approach enables us to describe a variety of problem
types in one common format. Additionally, the graph structure allows for trivial data augmentation (when
supported by the domain’s semantics) and the query structure allows one to define multiple simultaneous
prediction targets which force the models to learn the underlying process dynamics rather than a single
relationship between the input data and the desired prediction.

We extended the ‘learning rate test’ concept, showing how it can be modified to more robustly identify an
effective learning rate region for each individual model instantiation. This effort allowed us to determine
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an effective training hyperparameter region for each individual model instantiation on each problem type,
which is a process that would have otherwise been prohibitively expensive. However, we find that while this
approach was reasonably effective in practice it still has significant shortcomings that caused undesirable
training behavior in some cases.

Of the graph models we evaluated, we found that GraphConv consistently performed the worst, seemingly
underfitting to most problems as it was unable to demonstrate it had learned the dynamics of the problems
it was trained on. This is almost certainly owing to the fact that our graph realization of spatio-temporal
problems stores relative information about neighboring nodes in edge features connecting them. Since
GraphConv cannot exploit these edge features, it cannot take advantage of this useful bias.

Interaction Networks and PointConv seem to make meaningful predictions on all domains. This demonstrates
that they are able to learn the dynamics of the problem they are trained on in some useful way. As PointConv
learns an explicit weight function to filter neighboring nodes in the graph, we can visualize and interpret this
weight function to validate that it is appropriate for the domain. Interaction networks are largely composed
of black-box functions, and lack this interpretability. However, they perform slightly better than PointConv
on most tasks and seem to generalize better to previously unseen queries. We show how PointConv can be
augmented with an attention mechanism to bring its performance closer to interaction networks’ performance
without sacrificing intrepretability. However, it seems that in general if this interpretability is not needed,
interaction networks are generally the most appropriate model architecture to apply to the spatio-temporal
problems we evaluated.

Finally, we provide the codebase used to implement, define, perform, and evaluate every experiment presented
in this work. The codebase is designed to be approachable and extensible, to allow and encourage interested
parties to validate our results or modify and extend our experiments for further investigation.
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